Econometrics

 

 

 

 

 

 

 

Econometrics

Name

Institution

                                                                                                                                             

 

 


 

Y=

 

  1. Taking the natural logs on both sides of the equation gives

ln

 

ln

 

  1. How is  generally interpreted as?

is interpreted as the partial elasticity of input with respect to output

 

 

  1. Write the estimated equation below

 

Since  ,

 

Then the equation becomes;

 

ln

 

 

b2 + b3=1,

 

b2 + b3>1 and

b2 + b3<1

 

  1. Interpret the coefficients, and in words b2 b3 in words.

 

 

 

The coefficients of b2 b3 are constants returns to scale that the response of output to a proportionate change in inputs.

 

  1. What is the nature of the returns to scale?

 

The nature of returns to scale either doubles the input that will double the input when the sum of b2 b3 is equal to 1, or the nature of returns to scale there are decreasing returns to scale if the sum of b2 b3 is less than 1 and there are increasing returns to scale when the sum of b2 b3 is greater than 1.

 

 

 

 

 

 

 

 

Purify;

  1. kwhi = b1 + b2(pelec)2i + b3(gnp)3i + ei, As did in class

 

PCE, Y PDI, X2 Time, X3
220.6 309.3 1956=1
288.1 316.1 1957=2
290.0 313.5 1958=3
307.3 333.0 1959=4
316.1 340.3 1960=5
322.5 350.5 1961=6
328.5 367.2 1962=7
353.3 381.2 1963=8
373.7 416.0 1964=9
397.7 434.8 1965=10
418.1 458.9 1966=11
430.1 477.5 1967=12
433.5 499.0 1968=13
469.1 513.5 1969=14
476.9 536.7 1970=15

 

 

  1. Report your results below

Yi= 296.7 + 342.5

 

 

  1. Null hypothesis for B3:

 

H0: B3=0    (says that holding X2 constant, personal disposable income has no linear influence on personal consumption expenditure,Y)

H2: B3 ≠ 0 (there is an influence)

 

 


 

References

 

 

 

 

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: